Differential rates of evolution for the ZFY-related zinc finger genes, Zfy, Zfx, and Zfa in the mouse genus Mus.

نویسندگان

  • Priscilla K Tucker
  • Ronald M Adkins
  • Joshua S Rest
چکیده

A comparative study of the last exon of the zinc finger genes Zfx, Zfy, and Zfa from species of mice in the genus Mus was conducted to assess the extent of gene-specific and chromosome-specific effects on the evolutionary patterns among related X-, Y-, and autosomal-linked genes. Phylogenetic analyses of 29 sequences from Zfx, Zfa, and Zfy from 10 taxa were performed to infer relatedness among the zinc finger loci, and codon-based maximum likelihood analyses were conducted to assess evolutionary pattern among genes. Five models of nucleotide sequence evolution were applied and compared using a likelihood ratio test. Estimates of nonsynonymous to synonymous changes (dN/dS) for these genes suggest that amino acid substitutions are occurring at a more rapid rate across the autosomal- and Y-specific lineages compared to the X-specific lineage, with the Y-specific lineage showing the highest rate under certain models. The data suggest the action of gene-specific effects on evolutionary pattern. In particular, Zfa and Zfy genes, both with presumed restricted expression, appear less functionally constrained relative to ubiquitously expressed Zfx. Slightly elevated dN/dS for Zfy genes in comparison to Zfa also suggest Y-specific effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mouse Zfx protein is similar to Zfy-2: each contains an acidic activating domain and 13 zinc fingers.

The Zfy gene is located on the Y chromosome of placental mammals and encodes a zinc finger protein which may serve as the primary sex-determining signal. A related gene, Zfx, is similarly conserved on the X chromosome. Unlike that in most mammals, the mouse genome contains four homologous zinc finger loci: Zfy-1, Zfy-2, Zfx, and Zfa (on an autosome). We report that, in contrast to the mouse Zfy...

متن کامل

Evolution of the Zfx and Zfy genes: rates and interdependence between the genes.

A phylogenetic analysis of sex-chromosomal zinc-finger genes (Zfx and Zfy) indicates that the genes have not evolved completely independently since their initial separation. The sequence similarities suggest gene conversion in the last exon between the duplicated Y-chromosomal genes Zfy-1 and Zfy-2 in the mouse. There are also indications of conversion (or recombination) between the X- and Y-ch...

متن کامل

Intron/exon structure confirms that mouse Zfy1 and Zfy2 are members of the ZFY gene family.

Zfy1 and Zfy2 are homologous zinc finger genes on the mouse Y Chromosome. To ask whether these genes are properly classified as members of the ZFY family, we have characterized and compared their genomic organization to that of mouse Zfx, human ZFX, and human ZFY. We show that Zfy1 has 11 exons distributed across at least 56 kb, and Zfy2 has a minimum of 9 exons distributed across at least 52 k...

متن کامل

Mutational Analysis of ZFY in Sporadic Parathyroid Adenomas

Context The molecular pathogenesis of sporadic parathyroid adenomas is incompletely understood, with alterations in cyclin D1/PRAD1 and MEN1 most firmly established as genetic drivers. The gene encoding the X-linked zinc finger protein (ZFX) has recently been implicated in the pathogenesis of a subset of parathyroid adenomas after recurrent, hotspot-focused somatic mutations were identified. ZF...

متن کامل

Transcription of the sex-determining region genes Sry and Zfy in the mouse preimplantation embryo.

We have confirmed the faster growth of male preimplantation mouse embryos. We have also studied the transcription of Y chromosomal genes postulated to have a role in sex determination, using the highly sensitive technique of reverse-transcription polymerase chain reaction at these early stages. We find that two sex-determining region genes, Sry and Zfy, are transcribed during mouse preimplantat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 20 6  شماره 

صفحات  -

تاریخ انتشار 2003